Our ability to edit the genome using DNA-cutting proteins may have a profound effect on the way we treat diseases in the future:

It is likely to be at least several years before such efforts can be developed into human therapeutics, but a growing number of academic researchers have seen some preliminary success with experiments involving sickle-cell anemia, HIV, and cystic fibrosis (see table below). One is Gang Bao, a bioengineering researcher at the Georgia Institute of Technology, who has already used CRISPR to correct the sickle-cell mutation in human cells grown in a dish. Bao and his team started the work in 2008 using zinc finger nucleases. When TALENs came out, his group switched quickly, says Bao, and then it began using CRISPR when that tool became available. While he has ambitions to eventually work on a variety of diseases, Bao says it makes sense to start with sickle-cell anemia. “If we pick a disease to treat using genome editing, we should start with something relatively simple,” he says. “A disease caused by a single mutation, in a single gene, that involves only a single cell type.”