How the Pandemic Defeated America

“The coronavirus found, exploited, and widened every inequity that the U.S. had to offer.”

Author: Ed Yong
Source: The Atlantic
Published: Aug 3, 2020
Length: 32 minutes (8,196 words)

Our Pandemic Summer

“The fight against the coronavirus won’t be over when the U.S. reopens. Here’s how the nation must prepare itself.”

Author: Ed Yong
Source: The Atlantic
Published: Apr 14, 2020
Length: 20 minutes (5,150 words)

How the Pandemic Will End

“The U.S. may end up with the worst COVID-19 outbreak in the industrialized world. This is how it’s going to play out.”

Author: Ed Yong
Source: The Atlantic
Published: Mar 25, 2020
Length: 22 minutes (5,549 words)

The Last of Its Kind

The 14-year-old Achatinella apexfulva snail named George was the sole surviving member of its species. It was biologist David Sischo’s job to take care of George until it died, even as his team works to save other Hawaiian snails from extinction.

Author: Ed Yong
Source: The Atlantic
Published: Jul 1, 2019
Length: 10 minutes (2,588 words)

A New Origin Story for Dogs

On the messy process that turned wolves into our domesticated companions — and why it is so hard to reconstruct it.

Author: Ed Yong
Source: The Atlantic
Published: Jun 2, 2016
Length: 11 minutes (2,908 words)

Longreads Best of 2014: Science Stories

We asked a few writers and editors to choose some of their favorite stories of the year in specific categories. Here, the best in science writing.

Source: Longreads
Published: Dec 18, 2014

How Malaria Defeats Our Drugs

Anti-malarial drugs are quickly becoming ineffective as Plasmodium parasites from western Cambodia evolve resistance to them. The writer travels to the Thai-Burmese border to interview a French researcher named François Nosten who is working to eliminate malaria before the resistant parasites spread to other countries:

Nosten thinks that without radical measures, resistance will spread to India and Bangladesh. Once that happens, it will be too late. Those countries are too big, too populous, too uneven in their health services to even dream about containing the resistant parasites. Once there, they will inevitably spread further. He thinks it will happen in three years, maybe four. “Look at the speed of change on this border. It’s exponential. It’s not going to take 10 or 15 years to reach Bangladesh. It’ll take just a few. We have to do something before it’s too late.”

Hundreds of scientists are developing innovative new ways of dealing with malaria, from potential vaccines to new drugs, genetically modified mosquitoes to lethal fungi. As Nosten sees it, none of these will be ready in time. The only way of stopping artemisinin resistance, he says, is to completely remove malaria from its cradle of resistance. “If you want to eliminate artemisinin resistance, you have to eliminate malaria,” says Nosten. Not control it, not contain it. Eliminate it.

Author: Ed Yong
Source: Mosaic Science
Published: Apr 4, 2014
Length: 21 minutes (5,338 words)

The Unique Merger That Made You (and Ewe, and Yew)

In more than 3 billion years of existence on Earth, this merger happened once—and resulted in the complex life we have today:

There are many possible explanations, but one of these has recently gained a lot of ground. It tells of a prokaryote that somehow found its way inside another, and formed a lasting partnership with its host. This inner cell—a bacterium—abandoned its free-living existence and eventually transformed into the mitochondria. These internal power plants provided the host cell with a bonanza of energy, allowing it to evolve in new directions that other prokaryotes could never reach.

If this story is true, and there are still those who doubt it, then all eukaryotes—every flower and fungus, spider and sparrow, man and woman—descended from a sudden and breathtakingly improbable merger between two microbes. They were our great-great-great-great-…-great-grandparents, and by becoming one, they laid the groundwork for the life forms that seem to make our planet so special. The world as we see it (and the fact that we see it at all; eyes are a eukaryotic invention) was irrevocably changed by that fateful union—a union so unlikely that it very well might not have happened at all, leaving our world forever dominated by microbes, never to welcome sophisticated and amazing life like trees, mushrooms, caterpillars, and us.

Author: Ed Yong
Source: Nautilus
Published: Feb 6, 2014
Length: 16 minutes (4,112 words)

‘We Gained Hope.’ The Story of Lilly Grossman’s Genome

A couple has trouble finding a treatment for their 13-year-old daughter’s undiagnosed illness. Sequencing her genome provided a promising path to an answer:

“The family has a mantra: It’s a marathon not a sprint. They were battle-hardened from a long road of possible fixes and disappointments. ‘We thought: This is great but it’s probably just going to be another data point that we add to the binder,’ says Steve. ‘Lilly’s already had a lot of bad news in her life,’ says Gay. ‘Her biggest fear was that we wouldn’t find anything. Not knowing would be the worst thing.'”

Author: Ed Yong
Published: Mar 11, 2013
Length: 12 minutes (3,222 words)

Scientific Families: Dynasty

A look at ecologist Bob Paine, whose mentorship has produced a long line of influential scientists throughout his five-decade career:

“Soon, Paine’s students were growing up and embarking on careers of their own. Few have spawned as rich a legacy as Jane Lubchenco and Bruce Menge. They met as graduate students in Paine’s lab in 1969, married two years later and began a partnership that has generated more than 31 students and 19 postdocs. After the pair left Paine’s lab, they took his experimental approach to the US east coast; she focused on plants and herbivores, while he concentrated on predators. By enclosing, excluding and removing species at different points along the New England shore, they showed that fierce waves can keep predators such as starfish at bay, allowing mussels to dominate. But in sheltered areas, predators kept mussels under control, allowing Irish moss (Chondrus crispus), a type of red alga, to take over. The work revealed how the environment can control interactions between species.”

Author: Ed Yong
Source: Nature
Published: Jan 16, 2013
Length: 13 minutes (3,293 words)